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A micromechanical model of a diffusional transformation has been developed, which

describes the progress of the transformation within a three-dimensional ‘‘unit cell’’

submitted to an external stress state. The example chosen is that of an isothermal pearlitic

transformation of a steel. The transformation plastic strain is due to interactions occurring

between the local stresses and the transformation process, resulting in an oriented plastic

flow in or in the vicinity of the material layers swept by the transformation front. The analysis

of the local mechanical states of the simulation provides a good interpretation of the

evolution of transformation plastic strain, when considering the effect of applied stress level

and the way mechanical properties are imposed on the newly formed phase. In particular,

the normality law for transformation plasticity is related to the shape of the local plastic

zones. The discrepancy observed between simulation and experience is then discussed,

following two main points: the influence of the behaviour law of the phases and the way

interactions between neighbouring cells are prescribed. The difficulty and importance of

obtaining realistic mechanical properties of the forming pearlite is pointed out.
1. Introduction
Transformation plasticity occurs when a material
undergoes a transformation of its microstructure un-
der the simultaneous influence of an applied load.
Experimentally, the phenomenon and its mechanisms
have been extensively described in Gautier et al. [1]
and modelled from a phenomenological point of view
by Denis et al. [2]. At the scale of the phases, a mi-
cromechanical model using a finite element (FE) simu-
lation has been developed by the present authors
[3, 4], describing a transformation occurring with nu-
cleation and growth inside a ‘‘unit cell’’ submitted to
an external stress state. In that case, the mechanism
responsible for transformation plasticity is an orienta-
tion of the plastic flow generated around the new
phase particles by the local stress state.

In a previous paper [3], both the models set up for
describing the transformation and the evolutions of
transformation plasticity versus the progress of the
transformation were presented. Mainly, the influence
of parameters inherent to the FE discretization was
studied, considering a uniaxial applied stress of a con-
stant magnitude. In the continuation of that paper [4],
the model was submitted to complex loadings, uniaxial
stress states of different magnitudes and histories and
multiaxial stress states, resulting in the formulation of
a constitutive law for transformation plasticity.
0022—2461 ( 1997 Chapman & Hall
In parallel to the behaviour exhibited at the scale of
the cell, the transformation induces local effects aris-
ing from the imposed transformation strain, which
interacts with both applied and local stress states.
Such a simulation is then the more interesting as it
provides access to the development of plastic zones
formed around the newly formed phase particles and
to the variations of local mechanical quantities, i.e.
defined at the scale of the phases. Therefore, it is
possible to go deeper into the analysis of the local
effects of the transformation, than an experimental
set-up or analytical models (often based on a simpli-
fied hypothesis, such as uniform strain rates [5],
or uniform stress rates [6]) would allow, for which
the analysis of such a local information is more
problematic.

In the present work, we investigated first the local
origin of transformation plasticity, by studying the
variation of defined mechanical parameters on some
restricted geometrical entities located within the cell.
The analysis was led for a constant uniaxial applied
stress and the influence of some parameters of the
simulation on the local strain and stress fields has
been pointed out. Focus was mainly on the spherical
growth model, because the analysis of local fields is
more complex for the random description due to the
topology of the transformation front; therefore, only
4941



a few elements are given for this second model. The
model had been discussed on the basis of the compari-
son between experience and simulation. First, a short
review of both transformation descriptions is pre-
sented and the parameters used in the analysis of
the local mechanical states of the simulation are
introduced.

2. Local origin of transformation
plasticity

Because the model has been thoroughly presented
elsewhere [3], we recall briefly its essential features.
The transformation progress is described within
a three-dimensional ‘‘unit cell ’’ (a cube) submitted to
an external stress state. Each element of the FE mesh
within the cell corresponds to a volume element of
either phase provided with specific mechanical prop-
erties, and its transformation is simulated by the affec-
tation of an isotropic transformation strain and new
mechanical properties; this procedure ends when the
whole cell is filled with pearlite. The mechanical prop-
erties are given to an element either at the beginning of
the transformation (before the element receives its
transformation strain), or just after the transforma-
tion. The first situation will be labelled ‘‘beg’’ and the
second ‘‘end’’ in the sequel. At the scale of the cell,
transformation plasticity is due to the local accommo-
dation of the imposed transformation strain, i.e. the
plastic flow generated around the pearlite particles
induces a macroscopic plastic flow ‘‘oriented’’ by the
external load. We first consider an elastoplastic behav-
iour law of the phases, with isotropic hardening; the
corresponding mechanical properties are given in
Table I.

Because the transformation occurs by nucleation
and growth, we have described the transformation
progress in two different ways, corresponding to two
different scales.

1. a spherical growth model describing the simulta-
neous growth of regularly disposed nuclei. The trans-
formation starts by the first element located in the
corner of the mesh and proceeds by the formation of
the successive surrounding elements layers. Owing to
the spherical geometry of the growth, only one octant
of the cell is considered. The periodicity of the distri-
bution of pearlite particles and interactions between
neighbouring cells are simulated by prescribing the
faces of the cell to remain plane and parallel during the
transformation. The transformation front consists, in
this case, of the ‘‘spherical’’ boundary surface separat-
ing the elements already transformed, i.e. those which
4942
have received their transformation strain, from those
still in the austenitic phase;

2. a random progression model in which the pearl-
ite particles appear in their definite size, considering
the growth as a hidden phenomena: transformation
proceeds in that case by the random formation of
pearlite elements. Because this model describes the
transformation on the macroscopic scale of a sample,
there is no influence of the kind of boundary condi-
tions applied on the cell (which can be either those of
the spherical growth model or of free type). Owing to
the randomness of the model, there is in this case no
simple identification of the front, which is discontinu-
ous practically all along the transformation, because
different aggregates of pearlite particles are almost
always separated by mother phase particles.

2.1. Definition of mechanical parameters
and analysis loci

Among the local results of the simulation, the develop-
ment of plastic zones is of a prominent interest for the
analysis of the local effects of the transformation. The
parameter used below to quantify this information is
the equivalent cumulated plastic strain, denoted e

1
.

For a diffusional transformation, transformation plas-
ticity is a reflection of the ‘‘classical’’ microplasticity
developed around newly formed phase particles. How-
ever, a scalar measure of the local plasticity as defined
above is insufficient for explaining the development of
transformation plasticity at the macroscale, because it
originated in a local plastic flow oriented by the inter-
nal stress state. Transformation plasticity depends
also on the orientation effect of the external stress: no
plastic flow is observed at the scale of the cell for no
applied load, even if plastic flow appears locally. This
is due to an isotropic accommodation of the local
plasticity, on average. It is deduced that transforma-
tion plasticity is due to a microplasticity which is
favourably oriented by the external stress.

In order to quantify the influence of both external
and local stress states on the orientation of the local
plastic flow, we introduce a parameter, called the
anisotropy factor, g, in the following, and defined as
the contracted product of the local stress deviator
r
$
by the applied stress deviator R

$
. We divide by the

product of norms to obtain a factor normed to unity
(g lies between !1 and 1)

g " 3/2r
$
: R

$
/J2(r)J2(R) (1)

Because the local plastic strain rate tensor also has the
same principal directions as the local stress deviator
(from the normality rule), a unit value for g (!1 or 1),
TABLE I Input data for the FE calculation

Phase Young’s modulus (MPa) Poisson’s ratio Yield strength (MPa) Hardening slope (MPa)

Austenite 137500 0.3 25 3800
Pearlite 137500 0.3 110 8300
Volume change 3.6]10~3



Figure 1 Spherical growth model: 10 10 10 mesh. Unit cell.

obtained when both stress tensors have the same prin-
cipal directions, reflects a strong influence of the
external load on the orientation of the local plastic
flow (it leads effectively to a macroscopic plastic strain
which is the more favourably oriented in the principal
directions of R). Conversely, a small value for g means
a weak interaction between both entities. We note that
Leblond [5] has used the same parameter in order to
assess the validity of an analytical model for trans-
formation plasticity.

In addition to these two parameters which enable
more specifically to correlate the passage of the trans-
formation front with the development of transforma-
tion plasticity, we study in some cases the evolutions
of the hydrostatic stress, r

)
, which quantifies the com-

pression state accompanying the passage of the front
(and its transition to traction afterwards) and of the
equivalent stress, r

%
, which measures the transition

from elastic to plastic states, as well as hardening.
For the spherical growth model, we consider

meshes of 10 linear elements; the transformation pro-
ceeds, therefore, by the successive formation of an
equal number of layers of elements within the cell.
Owing to the spherical geometry of the growth, the
cell contains the principal diagonal as a privileged
axis (it plays the role of a time axis, because it allows
the degree of progress of the transformation inside the
cell to be marked), which is normal to the moving
front. Most of the analysis will therefore be followed
for the diagonal nodes, which we label iii (i ranging
from 1—10). We can note, however, that the applica-
tion of an uniaxial load breaks this symmetry. More
generally, a node inside the mesh is labelled ijk, where
the indices correspond to the axes z, y, x, respectively
(Fig. 1).

Considering now the random progression model,
for a typical mesh of 4 linear elements, the transforma-
tion consists of 64 steps. Because the cell represents, in
that case, the whole sample, there is no natural sym-
metry and it is therefore necessary to follow the evolu-
Figure 2 Random growth model, 4 4 4 mesh. Unit cell.

tions of the local parameters in the vicinity of a given
node. The nodes within the cell are labelled in the
same way as is done for the spherical growth model
(Fig. 2).

In the following sections, we analyse the influence of
the magnitude of the external load and of the way
mechanical properties are imposed to the new phase
on the evolutions of the previously defined local para-
meters. Owing to the irregularity of the transforma-
tion front for the random progression model, most of
the analysis will be devoted to the spherical growth
model.

2.2. Spherical growth model
2.2.1. Effect of the magnitude of an external

uniaxial stress
The case with no applied load provides a first insight
into the local effects of the transformation. Figs 3 and
4 show the evolutions of e

1
and r

)
for the diagonal

nodes, respectively; the transformation progress is de-
scribed by the transformation step in order to obtain
a correct scaling of the results for the first fractions
(the fifth step represents a transformed fraction of only
12.5%). Mechanical properties are imposed at the
‘‘end’’ of each step to the forming particles, and we
consider simulations in which the new phase does not
inherit the memory of plastic strain accumulated pre-
viously in austenite.

Following the evolution of e
1
for these nodes makes

a gradual plastification apparent with the transforma-
tion progress. In order to obtain a clearer analysis, we
reduce the information to the nodes 3 3 3 , 5 5 5, 7 7 7,
9 9 9 and 11 11 11. For instance, node 5 5 5 is little
plasticized until step 3. Most of its plastification oc-
curs then between steps 3 and 5 when the node is
swept by the front; a quite fast saturation of local
plasticity occurs afterwards, because the node then has
the higher mechanical properties of pearlite and
a slight plastic flow increase is then observed in the
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Figure 3 Spherical growth model, no applied stress. Evolution ver-
sus transformation progress of the accumulated plastic strain for the
diagonal nodes: (h) 3 3 3, (r) 5 5 5, ( ) 7 7 7, ( ) 9 9 9.

Figure 4 Spherical growth model, no applied stress. Evolution ver-
sus transformation progress of the hydrostatic stress for the diag-
onal nodes: (h) 3 3 3, (r) 5 5 5, ( ) 7 7 7, ( ) 9 9 9.

pearlitic regions. One deduces from the unloaded case
that most of the plastification occurs ‘‘during’’ the
passage of the front, when the material still has the
mechanical properties of austenite.

The later occurrence of the transformation in the
elements layer located near the external boundary of
the cell leads to a weaker plasticity for the correspond-
ing surface nodes (e

1
is nil for node 11 11 11). The levels

reached are, however, comparable for ‘‘internal’’
nodes (e.g. node 3 3 3) and ‘‘external’’ nodes (e.g. node
7 7 7) and are of the order of 10~3 to 1.7]10~3; as
expected, the highest levels are obtained for nodes
located in the centre of the cell (e.g. node 5 5 5).

No macroscopic plastic flow is observed at the scale
of the cell, even if a quite important microplasticity
develops at the local level. This can be attributed to an
isotropic plastic flow pattern around the forming par-
ticles, leading globally to a nil transformation plastic
strain. In order to assess this feature, we examine the
shape of plastic zones by considering the cumulated
equivalent plastic strain for nodes located in a plane
perpendicular to the diagonal of the cube: such a plane
is defined by the equation x#y#z"k, in which k is
the distance from the plane to the origin. For a node
4944
Figure 5 The spherical growth model at an applied stress of
20 MPa: (a) ‘‘end’’ and (b) ‘‘beg’’ cases. Evolution versus trans-
formation progress of the accumulated plastic strain for the diag-
onal nodes: (h) 3 3 3, (r) 5 5 5, ( ) 7 7 7, ( ) 9 9 9, (j) 11 11 11.

located in this plane (having indices i, j, k), all nodes
obtained by a permutation of the indices (for instance
nodes 3 4 5, 3 5 4, 4 3 5, 4 5 3, 5 4 3, 5 3 4) are equidistant
to the diagonal and belong therefore to a ‘‘circle’’. For
such a set of nodes, we have checked that e

1
is identi-

cal, which confirms the isotropic character microplas-
ticity for an unloaded cell.

The effect of the transformation on local stress vari-
ations is reflected by the passage of a node from
traction to compression when it is swept by the front
(Fig. 4). The hydrostatic stress drops suddenly when
the node is affected by the transformation, becomes
negative and the node then goes back to traction (e.g.
node 7 7 7 is under compression at step 6 for which
r
)
"!10 MPa and reaches the ‘‘end’’ of the trans-

formation at r
)
"60 MPa). The later transformation

of the nodes located near the outer surface (which we
call ‘‘external’’ nodes here) of the cell leads for them to
a drop of r

)
during which the material retains its

traction state (this is the case for node 9 9 9).
We now consider loaded cases (for which a trans-

formation plastic strain develops) and study the effect
of the magnitude of the applied load on the develop-
ment of local plasticity. We pay attention to the case
of a 20 MPa applied load, with properties imposed at
the end of the transformation step (Fig. 5a). As for the



Figure 6 Spherical growth model, for an applied stress of
(a) 10 MPa and (b) 20 MPa, ‘‘beg’’ case. Evolution versus trans-
formation progress of the accumulated plastic strain for the
diagonal nodes.

unloaded case, the microplastification occurs mainly
during the passage of the front, in the austenitic re-
gions and in the forming zones. A first noticeable effect
of the applied load is to increase globally the plastifi-
cation level; this feature is more pronounced for nodes
transforming in a later stage: for instance, quite similar
evolutions of e

1
are observed for node 3 3 3 (compare

the evolution of e
1

in the unloaded and the loaded
cases, Figs 3 and 5, respectively), but the levels are
sensibly different for node 5 5 5 (e

1
"1.7]10~3 in the

unloaded case, e
1
"2]10~3 for 20 MPa).

The difference between both cases is particularly
marked for the ‘‘external’’ nodes: application of the
20 MPa load level leads to a plastification of these
nodes well before the passage of the front (nodes 7 7 7,
9 9 9, 11 11 11 are plasticized already at step 2). It
results in e

1
levels much higher for these nodes

(e
1
(9 9 9)"1.1]10~3 for no applied load, and e

1
(9 9 9)

"2]10~3 for 20 MPa). This early plastification
(from step 3 corresponding to a transformed fraction
of 2.7%) of ‘‘external’’ nodes is more clearly visualized
on Fig. 6b which shows the distribution of e

1
along the

diagonal for steps 3, 5, 7, 10; we compare this distribu-
tion to the one obtained for half that load (10 MPa) on
Fig. 6a. Indeed, one observes in this last case a gradual
Figure 7 Evolution versus uniaxial stress level of transformation
plasticity; x"transformed fraction.

development of microplasticity along the diagonal,
because the increase of e

1
occurs mainly when the

node is swept by the front (e.g. node 4 4 4 is nearly
elastic at step 3 and little plasticity develops after
step 5).

Opposite to this, for an applied load of 20 MPa,
‘‘external’’ nodes plastify from the very beginning of
the transformation (third step), as shown in Fig. 6b,
resulting also in a more uniform plastic flow pattern
within the cell. The plastification of ‘‘external’’ layers
increases markedly with the transformation progress,
contrary to the case of 10 MPa. This change of plastic
pattern when increasing the load (from 10—20 MPa)
can be correlated to the change of slope observed
(between 10 and 20 MPa; more obviously in the early
stage of the transformation) in the evolution of the
transformation plastic strain versus the amplitude of
the applied load (Fig. 7).

For the unloaded case, the shape of the plastic zones
(for 20 MPa) is analysed: considering also the plane
normal to the diagonal, identical e

1
values are ob-

tained for nodes having their first and second index
permuted, which evinces the symmetry of the plastic
flow with respect to the plane y"z. The same sym-
metry is observed for the external stress deviator
(because the load & is applied in the x-direction,
the y and z components of the stress deviator are
equal to !2/3&). This result is a local explanation
of the fact that the transformation plastic strain and
the external stress deviator have the same principal
directions.

2.2.2. Effect of the way mechanical proper-
ties are imposed on the new phase

We analyse in the following the effect of the way of
imposing the mechanical properties on the new phase.
A uniaxial external stress of 20 MPa is considered and
we compare the evolution of the cumulated equivalent
plastic strain versus transformation step for the diag-
onal nodes, in both cases (‘‘beg’’ case, Fig. 5b; ‘‘end’’
case, Fig. 5a).

Local plasticity develops quite differently in each
situation: the increase of e

1
for a diagonal node is

smaller when it is swept by the front in the ‘‘beg’’ case
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(as can be seen, for instance, for node 5 5 5 between
steps 4 and 5) and most of the local plasticity develops
here before and after the passage of the front. This is
confirmed, for instance, by the fact that node 7 7 7
experiences the highest increase of e

1
between steps

4 and 5 (it is then in the austenitic state); a smaller
increase is noticed for node 3 3 3 which is already
transformed and has therefore the high mechanical
properties of pearlite. Following the evolution of e

1
for

node 5 5 5, a first important increase occurs between
steps 2 and 3, followed by a smaller one between steps
3 and 4. A saturation effect appears during the passage
of the front (e

1
is constant between steps 4 and 6),

followed by a second and smaller increase until the
end of the transformation.

These differences in the behaviour can be explained
by the high properties of a node under transformation
in the ‘‘beg’’ case; it is therefore more difficult for the
transforming layer to deform plastically and it is the
surrounding area that accommodates the transforma-
tion strain, essentially those layers which are still
austenitic. On the contrary, the transforming layers
experience the highest plastification in the end case,
because the corresponding elements have the proper-
ties of austenite. This explains the difference in the
occurrence of microplasticity and particularly the fact
that the second plastification observed in the ‘‘beg’’
case is less marked, because it concerns layers of
elements in the pearlitic state. For the nodes located
near the outer boundary, there is only one plastifica-
tion and e

1
remains constant thereafter.

It is interesting to note the development (even small)
of local plasticity in the pearlitic regions (in the ‘‘beg’’
case), which was not considered, for instance, in the
models developed by Leblond [5]; the author con-
siders that the new phase inherits the plastic strain
developed in the mother phase before transformation,
but no plastic flow could appear afterwards. However,
this hypothesis is reasonable regarding the results of
our simulation, because rather little plastic flow devel-
ops in pearlite and the main source of microplasticity
comes from plastic flow of the mother phase.

The effect of the transformation on local stress vari-
ations is evinced by the evolutions of the hydrostatic
(Fig. 8) and equivalent stresses (Fig. 9) ( ‘‘beg’’ case).
The passage of the front leads to a transition to com-
pression for the corresponding nodes (Fig. 8). One can
note that the plastification of the nodes located in
austenite occurs essentially under traction; their sec-
ond plastification occurs also under traction. A second
effect of the front passage is a drop of the equivalent
stress (Fig. 9). The initial value of r

%
is very near the

external stress level (20 MPa) and the levels are quite
near 25 MPa in the regions which plastify (e.g. for
node 5 5 5 at steps 3, 4, 5). The stress levels reached at
the end of the transformation are near the external
stress for the ‘‘external’’ nodes and they range between
80 and 100 MPa for ‘‘internal’’ nodes. In reality, stress
levels obtained at the Gauss points are higher than the
pearlite yield strength (110 MPa), because the corre-
sponding nodes experience a (small) plastification
when they are already transformed, as shown in
Fig. 5b. The reason for this discrepancy is that nodal
4946
Figure 8 Spherical growth model for an applied stress of 20 MPa:
‘‘beg’’ case. Evolution versus transformation progress of the hydro-
static stress for the diagonal nodes: (h) 3 3 3, (r) 5 5 5, ( ) 7 7 7,
( ) 9 9 9, (j) 11 11 11.

Figure 9 Spherical growth model for an applied stress of 20 MPa:
‘‘beg’’ case. Evolution versus transformation progress of the equiva-
lent stress for the diagonal nodes: (h) 3 3 3, (r) 5 5 5, ( ) 7 7 7,
()) 9 9 9, (j) 11 11 11.

results of the FE calculations are averaged over the
elements sharing the node.

The ‘‘beg’’ case leads to e
1

values higher than those
obtained in the ‘‘end’’ case; this tendency seems to
contradict the induced evolutions of the transforma-
tion plastic strain. This can be attributed to the insuffi-
ciency of the mere parameter e

1
to account for the

local interactions between the transformation strain
and the local stresses, leading to an orientation of
microplasticity. We therefore need to consider, in ad-
dition, the evolutions of the anisotropy factor, g,



Figure 10 Spherical growth model for an applied stress of 20 MPa:
‘‘beg’’ case. Evolution versus transformation progress of the aniso-
tropy factor for the diagonal nodes: (h) 3 3 3, (r) 5 5 5, ( ) 7 7 7,
( ) 9 9 9, (j) 11 11 11.

which provides a measure of the orientation effect of
local plastic flow. We consider these evolutions in the
‘‘end’’ case (Fig. 10). For a given diagonal node, g is
equal to unity in the beginning of the transformation,
drops when the node starts to plastify and tends to
unity during its transformation (e.g. node 5 5 5 at step
5); after transformation, g drops again to lower values.
There is consequently a strong orientation effect of
microplasticity generated for the material layers swept
by the front.

The situation is different for the ‘‘beg’’ case, because
the passage of the front does not generate plastic flow
in the layer of elements undergoing the transforma-
tion. In that case, there is a well-oriented (g"1)
plastic flow of the austenitic layers located near the
front; the second plastification of the layers already
transformed is much less oriented and contributes
very little to macro-plasticity. Consequently, it is the
comparison between both cases (‘‘beg’’/ ‘‘end’’), of
the levels of local plastic flow generated just after the
passage of the front which provides elements for ex-
plaining the sense of the induced evolutions of trans-
formation plasticity. Indeed, considering nodes 3 3 3,
5 5 5 , 7 7 7 at steps 3, 5, 7, respectively (Fig. 5a, b), the
highest plastic flow levels are obtained for properties
imposed at the end (e.g. for node 3 3 3 with
e
1
"1.1]10~3 in the ‘‘beg’’ case; e

1
"1.4]10~3 in

the ‘‘end’’ case).
We conclude from the analysis of the local mechan-

ical states for the spherical growth model that the
local origin of transformation plasticity is a micro-
plasticity experienced by the transforming layers and
of those located around the front when properties are
imposed at the end of the transformation step; the
contribution of the other layers to transformation
plasticity is quite small, because they experience
a local plastic flow either quite small or isotropic.

2.3. Random progression model
Owing to the absence of a regular and continuous
transformation front, a systematic analysis of the local
Figure 11 Random growth model. Transformed zones between
steps 25 and 32 (hatched areas); cut perpendicular to the z axis.

results of the simulation would be quite untractable
and we therefore make a more punctual analysis of the
evolutions of the mechanical parameters. We consider
a mesh of 4 linear elements and an external uniaxial
load of 10 MPa. The transformation consists of 64
steps and we select the local information of each of
8 steps: a linear interpolation is then done between
them in order to obtain a relatively continuous evolu-
tion of the parameters. The local analysis is focused on
some nodes chosen regarding their position inside the
cell: the nodes 5 5 5 and 5 5 3 located on the outer
boundary of the cell and node 3 3 3 located in the
centre of the cell. In Fig. 11, we visualize the trans-
formed zones (hatched areas) between steps 25 and 32
in planes perpendicular to the z-axis, corresponding to
the different layers of nodes; elements transforming
at step 32 (half-transformation) are cross-hatched.
Fig. 12a, b shows the evolutions of e

1
versus trans-

formation step for nodes 5 5 5 and 5 5 3 in the ‘‘beg’’
and ‘‘end’’ cases, respectively. A strong increase of e

1
occurs for node 5 5 5 between steps 24 and 32 when the
corresponding element (located in the corner of the
cell) transforms; afterwards (after step 32), the increase
of e

1
is very weak due to the high mechanical proper-

ties (those of pearlite) of the environment of the node.
Considering now node 5 5 3, the evolution of e

1
has the

same form: a strong increase occurs between steps 24
and 40, followed by much smaller variations. One can
notice that node 5 5 3 (common to two elements) ex-
periences the transformation the first time at step 40;
therefore, the increase of e

1
between steps 24 and 32 is

due to the transformation of neighbouring elements
containing this node (on layers 3 and 4, Fig. 11).
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Figure 12 Random growth model for an applied stress of 20 MPa:
(h) ‘‘beg’’ and (r) ‘‘end’’ cases. Evolution versus transformation
progress of the accumulated plastic strain for nodes (a) 5 5 5, step 32,
(b) 5 5 3, step 40, and (c) 3 3 3, step 6.

The same behaviour has been observed for other
nodes of the mesh located near the boundary. Consid-
ering now ‘‘internal’’ nodes, there is a more linear
evolution of e

1
. For instance, node 3 3 3 undergoes the

effect of the transformation for the first time at step 6;
it experiences plastic flow until the last step due to the
successive transformation of the environment (node
3 3 3 is common to 8 elements). However, the plastic
flow level reached at the ‘‘end’’ of the transformation is
weaker than that obtained for ‘‘external’’ nodes.
4948
These results show that the plastification of a node
has principally three origins: the transformation of the
far-located environment when the node is still aus-
tenitic, the transformation of the near-located envi-
ronment (there is still austenite around the node) and
its own transformation.

The affectation of mechanical properties at the be-
ginning of the transformation step leads to less local
plastic flow than in the ‘‘end’’ case; this tendency is
particularly marked for the ‘‘external’’ nodes; consid-
ering, for instance, node 5 5 5, the increase of e

1
during

the transformation (between steps 24 and 32, Fig. 12a)
is 0.003 in the ‘‘end’’ case, and only half of that (0.0015)
in the ‘‘beg’’ case. However, at the scale of the cell, the
resulting effect on transformation plasticity is weak
[3]: for a given element under transformation, it seems
that the main contribution to transformation plastic-
ity arises from the plastification of its environment
(near or far); as for the growth model, the local plastic
flow generated is strongly oriented towards the load
direction.

Compared to the spherical growth model, the ran-
dom formation of pearlite leads to a more uniformly
distributed plasticity within the cell (we checked that
all nodes are already plastified at step 8, correspond-
ing to 12.5% transformed fraction). Globally, this
leads to much higher plastic levels (they can reach
0.8%) for the random model; however, because the
increase of microplasticity is confined in a much
smaller volume (only one element transforms at each
step) compared to the growth model (in the case, a full
layer of elements transformed at each step), the result-
ing effect on transformation plasticity is much weaker
[3].

For the growth model, we observe that the increase
of plastic flow consecutive to the transformation
of a node occurs on material elements under
compression.

To conclude this part, one can first note the diffi-
culty of making a systematic and rigorous analysis of
the correlation between the local mechanical states
and transformation plasticity, due mainly to the large
amount of informations that one should handle in the
ideal case; a second reason is the complexity of build-
ing macroscopic (i.e. at the scale of the cell) plastic
potentials, which makes it difficult to quantify the
correlation. The analysis was therefore restricted to
a relatively limited information for each model, the
generalization being more easy in the growth case due
to the directionality of the transformation.

Notwithstanding these difficulties, the local analysis
is interesting in itself, because it provides an insight
into a further scale level (localization of plastic defor-
mations in each phase, orientation of microplasticity,
local stresses generated during the transformation
progress), which analytical models or experimental
techniques access less easily This gives a further inter-
est of using a micromechanical approach.

The next section is devoted to the discussion of the
model, relying on the comparison between results of
the simulation and experience; local results will be
used for a better understanding of the evolutions of
transformation plasticity.



Figure 13 Evolution versus transformation progress of transforma-
tion plasticity for both models. Comparison between simulation
and experiment.

3. Discussion of the model
Fig. 13 shows the evolutions (versus transformed frac-
tion) of transformation plastic strain for both models
(uniaxial load of 20 MPa), to which the experimental
evolution is superposed. There is an effect of the way
mechanical properties are imposed on the new phase
for the growth model, due to the still over-sized last
transformation steps [3]; however, a good agreement
is found between both models when properties are
imposed at the ‘‘end’’. This tends to prove that both
models, even if they describe the physical reality at
different scales, represent the same behaviour of the
material at the macroscopic scale.

However, the parabolic shape obtained for the
simulation is not adequate for representing the actual
behaviour, as measured on a sample: transformation
plasticity develops there very regularly and the evolu-
tion is nearly linear. Strong differences appear after
half-transformation and transformation plasticity cal-
culated for the complete transformation is smaller
than the experimental measure. Considering the relia-
bility of experimental measurements, one can point
out the difficulty of obtaining experimental points for
a partial transformation (the uncertainty concerning
the amount of pearlite is about 10%); nevertheless, the
value of transformation plasticity obtained for a com-
plete transformation has been confirmed by numerous
experiments and the order of magnitude by many
authors [2].

In order to go deeper into the analysis of this
discrepancy, we studied successively the influence of
the behaviour law of the phases introduced in the
simulation and that of transition from the micro- to
the macro-scale, i.e. the way interactions between
neighbouring cells are described.

3.1. Influence of the behaviour law of the
phases

In the model, we considered an elastoplastic behav-
iour law of the phases with isotropic hardening.
With respect to this assumption, two points can be
considered:

1. the conservation of plastic strain memory implies
that the new phase is consolidated by the totality of
plastic strain developed in austenite, which certainly
does not reflect the true behaviour. Several authors
have used hardening models in which the new phase is
only partially consolidated by the plastic strains of the
mother phase [2, 7];

2. due to the high temperature of the transforma-
tion (675 °C), both phases have a viscous behaviour. In
order to study this effect, we considered simulations
with an additional creep deformation in the behaviour
law of the phases.

3.1.1. Effect of plastic strain memory
From the point of view of the calculation, the subtrac-
tion of the memory of plastic strain is equivalent to
changing the reference state used for measuring the
equivalent cumulated plastic strain of any integration
point, when it is transformed into the new phase. The
value obtained just before the transformation then
serves as a new reference, which means that the point
has effectively a yield stress equal to the pearlite yield
strength when it is converted to pearlite.

We show in Fig. 14 the evolution of transformation
plasticity for both models (uniaxial load of 20 MPa)
considering both possibilities for each (subtraction or
not of plastic strain memory). For the growth model,
there is a relatively weak effect of memory, with a max-
imum of about 10% at the ‘‘end’’ of the transforma-
tion. The effect is much more marked for the random
model, because the discrepancy increases with the
transformation progress until 25% at the ‘‘end’’.
Considering the situation in which one subtracts the
memory, it results in final values of transformation
plasticity of 1.8]10~3 for the growth model and
2.45]10~3 for the random model. This difference in
the behaviour between both models with regard to
memory is due to the higher values of the cumulated
equivalent plastic strain for the random model, as
shown in the previous section.

However, the same parabolic shape for the evolu-
tion of transformation plasticity is retained, which is
still very far from experience.

3.1.2. Viscous behaviour of the phases
Creep behaviour is introduced by adding an addi-
tional time-dependent inelastic strain to the elastic
and plastic strains occurring in each phase, which
satisfies a normality law. We consider secondary creep
for which a widely used law is the Norton law [8, 9],
4949



Figure 14 Evolution versus transformation progress of transforma-
tion plasticity for (j, K) random and ( , T) spherical models,
(K, r) with and (j, ) without plastic strain memory, ‘‘end’’ case at
an applied stress of 20 MPa.

written

de& " Krm~1
%

exp(!Q/R¹ )r$ dt (2)

in which e& is the creep strain, ¹ the temperature, Q the
activation energy, R the constant for perfect gases
(R"8.32 Jmol~1). The coefficients K and m are speci-
fic to the material and to its conditions of use (temper-
ature, deformation velocity range); they have been
determined from experimental data [2] at the temper-
ature of 673 °C for each phase. We consider a
Johnson—Mehl—Avrami kinetic law of the form
x(t)"1!exp(!btn). Coefficients b and n are identi-
fied from the transformation times corresponding to
10% and 90% transformed fractions, for an isother-
mal pearlitic transformation (673 °C) occurring under
20 MPa uniaxial stress. Creep properties and para-
meters of the kinetic law are given in Table II.

In the following, we consider the effect of creep for
the spherical growth model, with properties imposed
at the ‘‘end’’ of each transformation step and
a uniaxial load of 20 MPa. We have imposed a total
duration for the transformation of 120 s, correspond-
ing to 90% transformed fraction (comparatively, the
transformation of the nine first layers of elements
represents 73% formed pearlite). Transformation
plasticity is evaluated in the same way as for the
non-viscous case, by subtracting at each step the elas-
tic strain (due to the external load) and the trans-
formation strain from the total strain.
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TABLE II Creep data used in the simulation

Phase Stress exponent, K
m (MPa~m s~1)

Austenite 1 3.6]1010

Pearlite 2.55 4.05]106

Activation energy, Q"300 000 Jmol~1

Kinetic law parameters: n"2; b"1.56]10~4 s~m

Figure 15 Evolution versus transformation progress of transforma-
tion plasticity for models (r) with and (h) without creep: ‘‘end’’ case
at an applied stress of 20 MPa. Total duration"120 s.

We compare the evolutions of transformation plas-
ticity (versus the transformed fraction) in both viscous
and non-viscous cases (Fig. 15). The effect of creep is
to increase gradually the transformation plastic strain
(with respect to the non-viscous case); this is due to the
fact that the creep contribution increases with the
transformation progress. In order to obtain a better
understanding of the effect of the creep contribution
on transformation plasticity, we make a brief analysis
of local strains developed during the transformation.

Fig. 16a—d show the evolutions of the equivalent
cumulated plastic and creep strains for an ‘‘internal’’
node (node 3 3 3, Fig. 16a, b) and an ‘‘external’’ node
(node 9 9 9, Fig. 16c, d); the sum of both strains is also



Figure 16 Evolution versus transformation progress of the accumulated plastic and creep strains for nodes (a, b) 3 3 3 and (c, d) 9 9 9 for an
applied stress of 20 MPa.
shown on the same figure (ideally, it would have been
preferable to represent the evolutions of the equivalent
cumulated inelastic strain; we suppose, however, that
the sum of both quantities gives a good representation
of it), in order to compare the inelastic strains de-
veloped in viscous and non-viscous cases. Considering
node 3 3 3, we observe similar values of plastic strains
in both cases, with lower levels during the passage of
the transformation front (between steps 2 and 3) when
creep occurs, which can be related to stress relaxation.
The difference in permanent strain at the ‘‘end’’ of the
transformation (Fig. 16b) is due essentially to the de-
velopment of a creep strain after transformation of the
node (from step 6). Considering now node 9 9 9, the
plastic strain is much smaller in the viscous case all
along the transformation (at the end of the trans-
formation, e

1
"1.5]10~3 in the viscous case and

e
1
"2]10~3 in the non-viscous case) and the creep

strain increases gradually with the transformation
progress. As shown in Fig. 16d, the total inelastic
strain developed when creep is considered is quite near
the plastic strain of the non-viscous situation and the
creep strain substitutes therefore partially for the plas-
tic strain.

However, the introduction of creep does not lead to
major changes of the resulting transformation plastic-
ity evolution: the shape is still parabolic and the effect
at the ‘‘end’’ of the transformation is only about 15%.
It is therefore necessary to put forward other explana-
tions of the discrepancy between simulation and ex-
perience. Previously [3] we particularly pointed out
the difficulty of measuring the effective properties of
the forming pearlite in its real conditions of deforma-
tion; those used in the simulation are those obtained
for a stable sample (completely transformed) and
properties of pearlite during its formation could be
weaker, owing to a higher mobility of defects. In order
to assess the effect of mechanical properties of pearlite,
we consider an extreme case in which both phases
have the same mechanical properties.

3.1.3. Effect of pearlite mechanical
properties

Fig. 17 shows the evolution of transformation plastic
strain for the spherical growth model, considering the
cases of different and identical properties of the phases
(‘‘end’’ case, uniaxial load of 20 MPa). The evolution
is quite similar at the beginning of the transformation
(same initial slopes), and there is an increased dis-
crepancy when the transformation advances, resulting
in a large difference at the ‘‘end’’ (1.75]10~3 for
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Figure 17 Evolution versus transformation progress of transforma-
tion plasticity for the spherical growth model. Effect of pearlite
mechanical properties at an applied stress of 20 MPa, ‘‘end’’ case.
(h) Same properties, (r) different properties.

different properties; 2.17]10~3 for the same proper-
ties). These evolutions result from the local plasticity
generated (Fig. 18): considering the evolution of e

1
for

a given node on the diagonal, the same initial slopes
are observed; when both phases have the same proper-
ties, plasticity continues to develop in already trans-
formed nodes. A decrease in the slope can be noticed
after transformation in that case, due to hardening for
‘‘internal’’ nodes (e.g. node 3 3 3), and to the effect of
boundary conditions for ‘‘external’’ nodes (e.g. node
11 11 11). As a result, the non-linear evolution of trans-
formation plasticity occurs when both phases have the
same properties.

The effect of pearlite properties is quite different for
the random progression model (Fig. 19). In that case,
transformation plasticity develops in a more linear
way and the ‘‘end’’ level is much higher (3.6]10~3

compared to 2.17]10~3 for the spherical growth
description). The non-linear evolution obtained when
the phases have different properties is due to the
change of the environment of a transformed element,
which contains a decreasing proportion of austenitic
elements: it then becomes more difficult to plastify
a volume in which the average mechanical properties
increase with the transformation progress. This indu-
ces the observed saturation of transformation plastic-
ity evolution.

When considering the discrepancy between both
models when using the same properties of the phases,
4952
Figure 18 Spherical growth model for an applied stress of 20 MPa.
Evolution versus transformation progress of the accumulated plas-
tic strain for nodes (a) 3 3 3, (b) 7 7 7, (c) 11 11 11. Effect of pearlite
mechanical properties. (h) Same properties, (r) ‘‘end’’ case.

attention must be directed towards the transformation
of the last layers of elements in the spherical growth
model, which interact with the stiff boundary condi-
tions applied to the cell; therefore, we investigated the
influence of the way interactions between neighbour-
ing cells are prescribed.

3.2. Description of interactions between
neighbouring cells

Because the random progression model describes the
physical reality at the macroscopic scale, there is no
effect of the kind of boundary conditions applied to



Figure 19 Evolution versus transformation progress of transforma-
tion plasticity for both models. Effect of pearlite mechanical proper-
ties at an applied stress of 20 MPa, ‘‘end’’ case.

the cell [3] and therefore we focus on the spherical
growth description here.

The evolution of transformation plasticity obtained
when considering rigid boundaries shows a saturation
effect after about half-transformation, whatever the
mechanical properties of the new phase. We explain
this effect by the transformation of the last layers,
which leads to less local plastic flow due to the pre-
sence of rigid boundaries. In order to investigate the
effect of boundary conditions on transformation plas-
ticity levels, we compare (Fig. 20) the evolution ob-
tained with free boundaries to the original one ( ‘‘end’’
case, 20 MPa applied load). The two curves are identi-
cal until half-transformation; afterwards, transforma-
tion plasticity develops more in the free case, owing to
more local plastic flow.

In order to isolate the effect of boundary conditions
from the additional effect of mechanical properties,
we consider a simulation with free boundaries and
identical properties of the phases. The evolutions of
transformation plasticity obtained for the growth
model with both kinds of boundary conditions are
compared with that of the random description
(Fig. 21). Considering the spherical model, there is
a large effect of using free boundaries and the evolu-
tion is near linearity; moreover, the shape and levels
reached are almost the same for both models
(3.6]10~3). This result shows that there is a strong
effect of the kind of boundary conditions applied
Figure 20 Spherical growth model. Evolution of transformation
plasticity versus transformation progress; effect of boundary condi-
tions at an applied stress of 20 MPa, ‘‘end’’ case. (h) Free bound-
aries, (r) constrained boundaries.

to the cell on the development of transformation
plasticity. Further, it points out the importance of
mechanical properties of pearlite, because this inter-
action effect is much weaker when pearlite has high
properties.

In fact, the two kinds of boundary conditions used
in the simulation describe two opposite situations: the
free-boundary case corresponds to the absence of
force coupling between adjacent cells, and the rigid-
boundary case corresponds to the absence of displace-
ment interactions between neighbouring cells. With
respect to a physical situation in which the cell would
represent a grain, using rigid boundaries seems realis-
tic, because there is then a restriction of the plastic
flow arising from the transformation of the material
located near the grain surface. However, from the
point of view of modelling, one could envisage less
restrictive boundary conditions, still preserving peri-
odicity but without symmetry, [10, 11] and which
would allow the normal displacement to fluctuate on
the boundary of the cell.

A further limitation of the actual description ap-
pears if one considers the crystallography of the
transformation: depending on whether one describes
a cubic (f c c) arrangement of atoms (actual situation
of the model) or a hexagonal compact structure, there
is a different choice of the appropriate cell, resulting in
different topologies of the transformation progress
and possibly in different transformation plasticity
4953



Figure 21 Evolution of transformation plasticity versus trans-
formation progress for both models: effect of boundary conditions
at an applied stress of 20 MPa, ‘‘end’’ case.

evolutions. Lastly, the difficulty of describing in a
unified way (by the same model) both processes of
nucleation and growth of the new phase, leads to the
two scale-decoupled actual descriptions. The real
transformation path (continuous nucleation and
spherical growth) lies, in fact, between these two de-
scriptions [3]. A further development of the simula-
tion would then consist in a combination of both
models into an integrated description of random ger-
mination of pearlite units and of their consecutive
growth.

4. Conclusions
In the following conclusions, points 1—3 recall the
partial conclusions of our previous two papers
[3,4].

1. The random progression model is satisfactory
from the numerical point of view, because only
small effects of the transformation step, mecha-
nical properties affectation and boundary conditions
occur.

2. A good agreement was found between both de-
scriptions, and the resulting transformation plastic
strain is a strongly non-linear function of the new
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phase fraction. However, these calculated evolutions
differ from the experimental behaviour, which is
linear.

3. The application of the model to complex load-
cases (multiaxial constant and uniaxial, which vary
with the transformation progress) leads to a constitut-
ive law for transformation plasticity, which is propor-
tional to the external stress deviator. It can then be
treated as an additional deformation in the behaviour
law of the material at the macroscopic scale.

4. The analysis of the local results of the simulation
has provided a guide for understanding, at least quali-
tatively, the evolutions of transformation plasticity.
In particular, it has been shown that most of the
deformation occurs inside and in the vicinity of the
transforming layer.

5. All results obtained with different properties of
the phases lead to an evolution of transformation
plasticity with a saturation at the ‘‘end’’ of the
transformation, whatever the description of the trans-
formation. As the behaviour law of the phases (loss of
memory of hardening, creep behaviour) becomes more
complex, it leads to increased transformation plastic-
ity making it closer to the experimental results.
However, the values obtained at the beginning of the
transformation are too high.

6. By considering the growth description, simula-
tions with identical properties of the phases and free
boundaries have clearly evinced the effect of rigid
boundary conditions, which induce lower plasticity of
the boundary layers. There is an additional effect of
the properties of pearlite: simulations with identical
properties of the phases lead to a transformation plas-
tic strain shape similar to those found experimentally,
although the levels are higher in the simulation
(3.6]10~3/2.9]10~3). These results lead us to sup-
pose that pearlite should be more plastically de-
formed: they can be correlated to the results of
Liebaut [12] who performed simulations of the behav-
iour law of the material at the ‘‘macroscopic scale’’.
When considering transformation plasticity (as an ad-
ditional term), such simulations overestimated the
measured yield stress after 60% transformation.
Further investigations concerning the mechanical
properties of the forming pearlite would be necessary,
because they could be weaker than that considered in
the simulation, owing to a greater mobility and
density of defects.
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